Noetherian Hopf Algebra Domains of Gelfand-kirillov Dimension Two

نویسندگان

  • K. R. GOODEARL
  • J. J. ZHANG
چکیده

We classify all noetherian Hopf algebras H over an algebraically closed field k of characteristic zero which are integral domains of GelfandKirillov dimension two and satisfy the condition ExtH(k, k) 6= 0. The latter condition is conjecturally redundant, as no examples are known (among noetherian Hopf algebra domains of GK-dimension two) where it fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenized Down-up Algebras

This paper studies two homogenizations of the down-up algebras introduced in [1]. We show that in all cases the homogenizing variable is not a zero-divisor, and that when the parameter β is non-zero, the homogenized down-up algebra is a Noetherian domain and a maximal order, and also Artin-Schelter regular, Auslander regular, and Cohen-Macaulay. We show that all homogenized down-up algebras hav...

متن کامل

Hopf algebras under finiteness conditions

This is a brief survey of some recent developments in the study of infinite dimensional Hopf algebras which are either noetherian or have finite Gelfand-Kirillov dimension. A number of open questions are listed.

متن کامل

Centralizers in Domains of Finite Gelfand-kirillov Dimension

We study centralizers of elements in domains. We generalize a result of the author and Small [4], showing that if A is a finitely generated noetherian domain and a ∈ A is not algebraic over the extended centre of A then the centralizer of a has Gelfand-Kirillov dimension at most one less than the Gelfand-Kirillov dimension of A. In the case that A is a finitely generated noetherian domain of GK...

متن کامل

Homological Integral of Hopf Algebras

The left and right homological integrals are introduced for a large class of infinite dimensional Hopf algebras. Using the homological integrals we prove a version of Maschke’s theorem for infinite dimensional Hopf algebras. The generalization of Maschke’s theorem and homological integrals are the keys to studying noetherian regular Hopf algebras of Gelfand-Kirillov dimension one.

متن کامل

The Gelfand-Kirillov Dimension of Rings with Hopf Algebra Action

Let k be a perfect field, H a irreducible cocommutative Hopf k-algebra and P (H) the space of primitive elements of H, R a k-algebra on which acts locally finitely H and R#H the associated smash product. Assume that H is almost solvable with P (H) finite-dimensional n and the sequences of divided powers are all infinite. Then the Gelfand-Kirillov dimension of R#H is GK(R) + n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010